
IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 50, NO. 9, SEPTEMBER 2002 2185

On the Fast Approximation of Green’s Functions in
MPIE Formulations for Planar Layered Media

N. V. Shuley, Member, IEEE, R. R. Boix, Member, IEEE, F. Medina, Senior Member, IEEE, and M. Horno

Abstract—The numerical implementation of the complex image
approach for the Green’s function of a mixed-potential integral-
equation formulation is examined and is found to be limited to low
values of 0 (in this context 0 = 2 0, where is the dis-
tance between the source and the field points of the Green’s func-
tion and 0 is the free space wavelength). This is a clear limitation
for problems of large dimension or high frequency where this limit
is easily exceeded. This paper examines the various strategies and
proposes a hybrid method whereby most of the above problems
can be avoided. An efficient integral method that is valid for large
0 is combined with the complex image method in order to take

advantage of the relative merits of both schemes. It is found that a
wide overlapping region exists between the two techniques allowing
a very efficient and consistent approach for accurately calculating
the Green’s functions. In this paper, the method developed for the
computation of the Green’s function is used for planar structures
containing both lossless and lossy media.

Index Terms—Antenna, complex images, Green’s function,
numerical analysis, scatterer.

I. INTRODUCTION

I N THE numerical modeling of printed planar structures
used in monolithic integrated microwave and millimeter

structures, it is generally accepted that the method of moments
(MoM) [1] is one of the most efficient and rigorous methods
for the analysis of small-to-medium-sized structures (up to
several wavelengths). MoM formulations in either the spatial
or spectral domain involve the conversion of an operator based
integro-differential equation into a matrix equation that is
subsequently passed to the computer for numerical processing.
The individual entries of the matrix require spatial or frequency
integrations involving the Green’s function in the appropriate
domain and suitable basis and testing functions. Multiple
numerical integration is usually required for this step of the
MoM procedure that subsequently makes the filling time a long
time-consuming process. This is particularly true for problems
that involve electrically large geometries or many frequencies,
such as is required in ground penetration radar (GPR) studies,
which are interested in the short pulse scattering from buried
objects (e.g., [2] and [3]) or other problems involving large
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transverse distances, such as in the mutual coupling of mi-
crostrip arrays of more than a few elements. Other typically
large geometry structures such as traveling-wave antennas or
even relatively small arrays of resonant elements could benefit
from the fast evaluation of the Green’s functions that would
considerably speed up matrix fill times.

For problems involving planar stratified media, one recent
trend that is becoming widely acceptable is to implement a dis-
crete complex image approach [4]–[9]. Originally proposed and
formulated by Fanget al. [4], this method is essentially an al-
ternative means of evaluating the time-consuming Sommerfeld
integrals that are integral representations of the Green’s func-
tions. The main advantage of a complex image scheme is that
the numerical evaluation of the Sommerfeld integral in con-
junction with an interpolation scheme is completely avoided.
The method is particularly attractive for mixed-potential inte-
gral-equation (MPIE) formulations since all the Green’s func-
tions for this formulation are typically cast in terms of scalar
functions involving Hankel transforms. The advantage of the
method becomes apparent when it is realized that the Hankel
transform for a spherical wave can be expressed, in closed form,
as a summation of cylindrical waves via the Sommerfeld iden-
tity [11]. In addition, the MPIE formulation benefits from the
fact that the singularity of both the scalar and vector poten-
tials are of the order of and, therefore, less singular than
spatial-domain electric-field integral-equation (EFIE) formula-
tions. Furthermore, the moment integrals associated with the
singular term are known in closed form for certain basis func-
tions.

Unfortunately, the numerical implementation for the com-
plex image approach is generally limited to low values of

, where is the distance between the source and
field points of the Green’s function and is the free-space
wavelength. As previously mentioned, this is a clear limitation
for problems of large dimension or high frequency where
this limit is easily exceeded. This paper examines the various
strategies and proposes a hybrid method whereby most of the
above problems can be avoided. An efficient integral method
that is valid for large is combined with the complex image
method (CIM) in order to take advantage of the relative merits
of both schemes. It is found that a wide overlapping region
exists between the two techniques allowing a very efficient
approach for accurately calculating the Green’s functions.
Section II reviews the CIMs currently in use and explains the
difficulties for large for both lossless and lossy structures.
Section III discusses the corresponding integral method and
Section IV presents some results, which combine Sections II
and III to illustrate the technique.
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Fig. 1. Multilevel planar geometry.

Without loss of generality, illustrations have been confined to
the scalar potential Green’s function . This component con-
tains all the essential features of the Sommerfeld integral: slowly
convergent oscillatory behavior with surface wave poles in the
integrand, branch point singularities, and a nonzero quasi-static
limit. The worst-case scenario also occurs when source and field
points are assumed to be coplanar, which corresponds to the
boundary condition used in forming the MPIE. This condition
is assumed throughout this paper. Again, without loss of gener-
ality, attention has been focused on the microstrip structure for
illustrative purposes.

II. CIM

We begin by considering a multilayered medium, where
. is the source

point and is the field point. Let , where
be a function representing either

the scalar Green’s function or any of the vector potential entries
of the Green’s dyad for the multilayered medium of Fig. 1. The
function can be written in terms of its zeroth-order
Hankel transform as follows:

(1)

where the Sommerfeld integration path (SIP) is passing above
the poles and branch point at of (Fig. 2)
[6]. The function can be obtained in a relatively
straightforward way for the multilayered geometry of Fig. 1 by
means of iterative algorithms [6]. However, once
is known, the Sommerfeld integral of (1) cannot be obtained in
closed form and, therefore, it is not possible to obtain an exact
analytical expression for . The idea underlying the
complex image approach is to obtain an accurate approxima-
tion of in such a way that the Sommerfeld integrals
of (1) can be determined in closed form and, thus, an accurate
analytical approximation of can be obtained accord-
ingly. As we shall see later in this paper, the problem arising

(a)

(b)

Fig. 2. (a) Two-level complex integration paths in the complexk -plane. SIP
is the Sommerfeld integration path; the same path is also applicable to lossy
structures. (b) Integration contour in thek -plane corresponding to (a).

from this idea is that it is impossible to build accurate approxi-
mations of both and for all values of
and , respectively.

In the following, we will show how the CIM has been applied
in this paper for the particular case of . We will distinguish
between the two cases.

Case 1: It is assumed that and lie on a plane parallel to
the interfaces inside theth layer. In this case, for every value
of , we approximate as

where and

for scalar potential

for vector potential

(2)

Here, is the quasi-static limit or the asymptotic
limit of as becomes large. are
the poles of and

are the corresponding residues
at the poles. is the function to be approximated
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by an exponential series and is given by

(3)

Case 2: and are at the interface between theth and
th layers. Again, . This is nearly always the case re-

quired for single-layer microstrip-based problems without vias.
In this case, the above formulas still hold with the exception of
the quasi-static limit , which should be changed to

(4)

The complex image formulation as outlined above is essen-
tially the method of Chowet al.[5] for a microstrip structure and
later extended by Aksun and Mittra [8]. In both of these papers,
the scalar and vector potential Green’s functions in the spectral
domain were transformed to the spatial domain by first analyt-
ically extracting from the spectral domain, as in the above for-
mulation, the surface-wave poles and quasi-static images. The
remaining terms are then handled by performing a Prony, least
square Prony, or matrix pencil of functions (MPOF) [12] expo-
nential fit to the remaining terms that constitute the complex im-
ages. Aksun [9] then generalized the CIM to multilayer planar
structures as formulated here. However, in an effort to preserve
generality, wherea priori information of the surface-wave poles
and quasi-static information may not be known explicitly, nei-
ther the poles, nor the quasi-static terms were extracted, but a
method of proceeding directly to the entire Green’s function
was considered. This generalization considered a two-step sam-
pling scheme, which addresses the problem of trying to simul-
taneously preserve both the low behavior (predominantly
far-field information) and the slow convergent asymptotic be-
havior of the spectrum (predominately near-field information),
although Kipp and Chan [18] were the first to report on such a
split sampling scheme in order to provide for a more effective
utilization of the exponential approximation. Given that regu-
larly spaced data is required by any of the exponential fitting al-
gorithms, this strategy represents a good compromise between
the conflicting requirements as noted above.

The application of the two-step exponential fitting algorithm
of Aksun [9] to (3) requires two sets of samples of the known
function . The first set of samples is obtained
along a deformed path in the -plane passing above
the surface-wave poles and branch point of [see
Fig. 2(a)]. Once the surface-wave poles and branch point are
safely passed, the second set of samples is obtained along a
second path over the real axis of the -plane. The com-
bined path is thus equivalent to the SIP as required

by the Hankel transform. As in [9], this paper uses the MPOF
algorithm [12] to determine the unknown coefficients (am-
plitudes and exponents) of (3). This requires that the samples
of are taken in terms of a real variable, which
must be chosen in such a way that the complex function of,

[appearing in the exponents of (3)] is a linear
function of . Following Aksun [9], the transformations linking

and in the paths and of the complex -plane are
given by

(5)

Full guidelines for choosing , —the points that delimit the
respective paths—may be found in [9]. Corresponding plots of

and in the complex -plane are shown in Fig. 2(b).
The equations for and used in this paper (5) are the

same as those of Aksun, except for the fact that the wavenumber
of the open layer has been used instead of the wavenumber of
the source layer. This is an important difference, as discussed

by Kipp and Chan [10]. Had we used in

the expressions for and instead of using

, then and would have

had a branch point at while would still
have a single branch point at [10]. Moreover, there is no
conceptual difficulty in using the same equations for treating the
lossy substrate case. The path is the same. Whereas ifwas
used instead of , the complex dielectric would force a change
in path. This difference reinforces the notion of having the func-
tion to be approximated and the exact function sharing the same
branch point. Analytical continuation requires the function to
be approximated to be analytic not only on the integration path

in the complex -plane, but also in all regions of in the
neighborhood of the path. The paths in the- and -planes are
shown in Fig. 2. Sampling and application of the MPOF algo-
rithm then converts the Green’s function to a sum of exponen-
tials, which may be directly inverted to the spatial domain via
the Sommerfeld identity [11]

(6)
where is an arbitrary complex constant.

If we are dealing with small , the above procedures work
well. However, the far-field Green’s function is dominated by
cylindrical surface waves and the expression provided for the
Green’s function by the CIM contains a series of quasi-spherical
waves of the type shown in the left-hand-side term of (6), which
do not have a clear physical meaning. Thus, we expect prob-
lems with the CIM for large . We now illustrate some of the
above observations with the canonical set of data of [5]. Here,
we have used the two-step method both with and without extrac-
tion of the surface-wave poles. We also include in the plot the
effect of using the free-space (called “case A” in the figures)
as compared to the wavenumber of the dielectric layer
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Fig. 3. G for the microstrip data of [5] using the two-step MPOF algorithm.
� = 12:6, t = 1:0mm,f = 10GHz. Case A corresponds to usingk � k

in (2)–(4) andk in (5), whereas case B corresponds to usingk " � k

instead of k � k in (2)–(4) andk
p
� instead ofk in (5). For case A

curves:N = 35 samples onC , N = 20 samples onC . For case B
curves:N = 100 samples onC , N = 300 samples onC . With/without
pole extraction refers to if the surface wave term(s) is/are extracted prior to
exponential approximation.

Fig. 4. Same data as for Fig. 3.f = 50 GHz.

(called “case B”) as per the above discussion (Fig. 3). The dif-
ference in sampling levels required to achieve correspondence
of the curves at low frequency is shown in the caption. Figs. 3
and 4 are for different frequency data of [5]. It is to be noted that,
for Fig. 3, there is only one TM surface wave propagating, while
in Fig. 4, there are three surface waves. The “exact” result using
the method of averages [17] together with straight quadrature is
shown for comparison.

While both data sets agree very well with [5] for low
(apart from a normalizing factor), there is clearly a region
around where the image method fails. The
type of failure is different for cases A and B as evidenced by
the figures, which seem to confirm the findings of [10]; in
particular, the data of [10, Fig. 10]. However, the maximum

horizontal distance before divergence of the two results seem
to differ by an order of magnitude compared to that reported in
[10]. In order to explain this, one should note that, whereas in
Figs. 3 and 4, the source and field points are on the boundary
between the substrate and free space, while in [10, Fig. 10],
the source and field points are inside the substrate between
dielectric layers. Thus, the errors resulting from using the
wrong branch point instead of the right one

will be amplified. An attempt to increase the number
of samples on so as to improve the far-field result brought
about inconsistent and number-of-samples-dependent results,
sometimes with an even worse result for an increased number
of samples. This is not really surprising when the surface-wave
term is not extracted from (2) and (3). Generally,
the exponential fitting procedure has a problem with terms
involving a behavior, i.e., in cases where the surface
wave is dominating, as well as the branch-point problems of
case B previously mentioned.

By realizing that the problem in the MPOF algorithm exists
when the surface waves are dominant, it is instructive to extract
the surface-wave contribution before commencing the exponen-
tial approximation. This process makes use of the Hankel trans-
form pair defined by the identity [16]

(7)
It might be thought that prior extraction of the surface-wave
contribution would significantly improve the complex image ap-
proach in the far field, as these terms are the dominating ones
here. In Figs. 3 and 4, it is shown that this is true in case A, but is
not true in case B. Since case B is the case treated by Aksun [9],
this seems to justify Aksun’s approach in avoiding the extraction
of the surface-wave terms. Determination of the surface-wave
contribution is a time-consuming task (because the poles and
associated residues have to be found) and, in case B of Figs. 3
and 4, the benefit of obtaining the surface-wave contribution is
lost due to the failure of the MPOF algorithm for large .

It is also instructive to examine the dependency on the number
of samples in the two regions of Fig. 2(a). Ideally, all results
should be independent on the sampling scheme employed to
make the exponential series approximation. However, due to the
limitations of the numerical algorithm, this is rarely the case. A
large number of numerical tests show that the results are quite
stable with different numbers of samples () on the part of
the spectrum. This is understandable since once the quasi-static
contribution is removed the two-step process makes the spec-
trum decay quickly to zero with very little fine detail. On the
other hand, rapid changes in the spectrum can occur at low
values of , which correspond to the far-field region of
the spatial domain. It, therefore, seems plausible to increase the
number of samples ( ) in the region for increased accuracy
in the far field. Fig. 5 shows that good results for large can
be obtained for a low number of samples. It should also be noted
that the number of samples required to achieve good results
for when in these figures is substan-
tially less than those mentioned in [9]. This is probably because,
in the current paper, the quasi-static limit and the surface-wave
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Fig. 5. Convergence study of the number of samples used in the far-field
region. Microstrip structure:� = 12:6, t = 1:0 mm, f = 50 GHz. Case A
with extraction of all surface-wave poles.

Fig. 6. Comparison between the CIM and quadrature (full line) forG for
two levels of loss. The CIM (dotted line) uses case A with all poles extracted.
f = 10 GHz, � = 4:4, t = 10 mm.N = 35 samples onC , N = 20

samples onC .

term are extracted before applying the CIM. Furthermore, the
right branch point is used in the approximation of the spectral
Green’s function, which are steps that are not considered in [9].
However, when , no matter how many samples
are used in the application of the CIM proposed in this paper,
the results for tend to be very poor. Once the stable
number of samples has been ascertained, the exponential series
approximation is stable with frequency data, as shown in Fig. 6
for both the lossless and lossy cases. All data of this plot using
the CIM were calculated using the same number of samples.

Typical results for the CIM involving lossy dielectrics have
not yet been treated in the literature. As mentioned previously,
the -plane contour does not need to be modified if the case A
formulation is followed. Fig. 6 shows some typical data for in-
creasing loss tangent using the CIM as compared to quadrature.
Again, the failure of the CIM for large and increasing loss

tangent is apparent. Once again, it appears that the attenuated
surface wave cannot be properly reconstructed. For the lossy
case, the surface waves are decaying at while the spher-
ical wave decays at , the surface wave will thus predominate
at smaller for increasing loss. Care needs to be exercised
when using the CIM in high loss situations where these surface
waves control the quality of the approximation.

III. I NTEGRAL METHOD

A. Lossless Case

It appears from the above section that the only difficulty with
the CIM is its inability to deal with the surface-wave behavior at
large . An integral technique that is attractive for large
behavior was proposed in [13]. Although the technique deteri-
orates for decreasing , this exactly suits our purposes. This
approach considers the imaginary axis as part of an alternative
path for the evaluation of the Sommerfeld integral. If Cauchy’s
theorem is applied to the contour of the -plane, shown in
Fig. 7(a), it can be shown that the Sommerfeld integral of (1)
can be rewritten as

(8)

where is the modified Bessel function of zeroth order and
are the residues at the poles of

. Although the result contains an infinite integral in
the first term, the modified Bessel function decays exponentially
as its argument increases, thus ensuring a quick computation of
the infinite integral with increasing. The second term is an
integral over the finite interval and is readily computed.
Although the technique also requires the poles and their residues
to be evaluated, the total numerical effort required is actually
inversely proportional to . As noted by the originators of
this technique, the various terms become dominant according
to the distance from the source. Thus, the terms that correspond
to the deficiency of the complex image approach, may be readily
identified.

B. Lossy Case

Including losses implies that the poles now become complex
and move downward off the real axis (and toward the imaginary
axis for increasing loss). This means that they would no longer
be captured in the lossless path noted above. However, a set
of two contours and [see Fig. 7(b)] can be used for
the computation of the Green’s function in this case. This
new set of two contours makes it possible to account for the
complex poles of the Green’s function, as explained in [14].
Evaluation of the Green’s function using the two new contours
requires that the traditional Sommerfeld branch cut (which
divides the complex -plane into a proper and an improper
sheet) be modified to a new cut. This new cut is defined as

. Ordinarily, using different branch
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(a)

(b)

Fig. 7. Integration contours in thek -plane for the integral method of
Section III. (a) Lossless case. (b) Lossy case.

cuts means that the leaky-wave poles, which were all on the
lower Riemann sheet in the case of the Sommerfeld cuts,
can now be a problem if the contour is not chosen correctly.
However, it can be shown that this particular path avoids the
leaky-wave poles provided that any leaky-wave pole is not
close to the negative imaginary axis. Thus, with this choice of
integration path, any lossy poles present are enclosed, which
was not the case of the lossless formulation. When Cauchy’s
theorem is applied to the two closed contours and
of Fig. 7(b), it is possible to obtain an expression for the
Sommerfeld integral of (1), which is a generalization of (8)
This expression is given by

(9)

Fig. 8. Comparison of the calculation forG using the CIM (case A with full
surface-wave pole-extraction full line) and the integral method (dotted line) of
Section III,� = 12:6, t = 1:0 mm,N = 35 samples onC , N = 20

samples onC .

IV. COMBINATION OF COMPLEX IMAGES AND

INTEGRAL METHOD

It is suggested that, for all values of , a combination of
the CIM and the integral method will be a very efficient means
of calculating any Green’s functions required in a mixed-po-
tential formulation. As has been observed, the CIM can experi-
ence problems in the region of large . On the other hand, the
integral method becomes very time consuming for small.
Clearly there must be a region of overlap for the two approaches
that will allow a certain amount of flexibility in an automatic se-
lection scheme. Two beneficial results of the study of the overlap
procedure are, firstly, that we are able to check the relative ac-
curacy of each of the techniques against each other in respective
regions and, secondly, since the terms in the integral approach
have a direct correspondence to certain sections of the field, we
are able to readily identify the source of any inaccuracies in the
computational process.

Fig. 8. shows the combination of the two techniques for the
lossless case. The integral method has been computed for an
upper limit of 10 for the modified Bessel term. If required,
a higher truncation level gives a more accurate result for lower

, but at increased computational effort. It should be noted
that the point of departure of the CIM defines the upper end point
of a very wide overlapping region between the two methods and
the lower end point can be changed by selection of an appro-
priate upper limit of the first integral in (5). As there are two or
more surface waves interacting in the 30- and 50-GHz plots, the
ripple structure is more pronounced in those plots.

Fig. 9 shows some new results for the CIM for a lossy struc-
ture for the same parameters of Fig. 6. Here, the “exact” quadra-
ture curve has been repeated for convenience. Losses in the
system tend to flatten out the characteristic “plateau” of the
curve and the corresponding failure of the MPOF algorithm is
less dramatic, but as discussed earlier. The surface wave also ex-
periences a decaying mechanism and eventually terms that are
without attenuation dominate, which lead to an interference phe-
nomena at large , shown here around for the
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Fig. 9. Comparison between the integral method of Section III (dotted line)
and quadrature (solid line) repeated from Fig. 6.f = 10 GHz, � = 4:4,
t = 10 mm. The truncation level for the first integral of (9) has been set at
10k .

curve. This interaction has been interpreted as a
Zenneck–surface-wave interaction and is due to the interaction
of a pole and branch point [15].

Finally, it is also instructive to check the claim that the sur-
face-wave contributions indeed dominate in the far field. We
chose a value of corresponding to a nominal
distance at which CIM experiences difficulties. We evaluated
the contribution of the surface-wave term(s) compared to the
total field, as formulated in (8) and (9). The percentage error be-
tween the approximate (surface-wave field) and “exact” [com-
plete (8)] was 4.2% for the data of Fig. 3 and 4.8% for Fig. 4,
both reducing for larger . For the medium-loss case of Fig. 9
( ), the error increased to 26%, only falling to 3.5%
by . Although somewhat frequency depen-
dent, such error levels indicate that, for high-accuracy evalua-
tion of the Green’s function, the surface-wave terms are, in fact,
not completely dominant when the CIM begins to fail.

The organizational strategy in a generalized code construc-
tion would, therefore, be to compute the Green’s function using
the CIM for small and then implement the integral method
for intermediate distances. The combination of the CIM and in-
tegral method of Section III for the lossless case is shown di-
rectly in Fig. 8 and the lossy case may be inferred from a com-
bination of Figs. 6 and 9. At large , the surface waves (both
cylindrical and Zenneck waves) are dominating and the Green’s
function may be set without any integration at all, as explained
in [15]. The overlap between these regions may be chosen some-
what arbitrarily given the large overlap between the strategies.
Although this paper has concentrated on the scalar potential,
similar observations may be made for the other components of
the vector potential dyadic .

V. CONCLUSION

For the computation of the Green’s functions using an MPIE
approach in a planar multilayered structure, it is not sufficient to

rely solely on the CIM for the cases where large transverse dis-
tances are involved. This paper has demonstrated a strategy of
combining an integral and the CIM for very rapid and accurate
evaluation of the Green’s function. The method has also been
extended to the case of lossy media. However, it must be stated
that the price paid for this combined approach is ultimately an
increase in CPU time over the direct application of the CIM
alone in spite of the very efficient numerical integration called
for in the approach, as discussed in this paper.
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