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On the Fast Approximation of Green’s Functions in
MPIE Formulations for Planar Layered Media

N. V. Shuley Member, IEEER. R. Boix Member, IEEEF. Medina Senior Member, IEEEand M. Horno

Abstract—The numerical implementation of the complex image transverse distances, such as in the mutual coupling of mi-
approach for the Green’s function of a mixed-potential integral-  crostrip arrays of more than a few elements. Other typically
equation formulation is examined and is found to be limited to low large geometry structures such as traveling-wave antennas or
values ofkg p (in this context ko p = 27 p/ Ao, Where p is the dis- . .
tance between the source and the field points of the Green’s func- V€N relatively small arrays of resonant eleme_nts could benefit
tion and o is the free space wavelength). This is a clear limitation from the fast evaluation of the Green’s functions that would
for problems of large dimension or high frequency where this limit  considerably speed up matrix fill times.
is easily exceeded. This paper examines the various strategies and For problems involving planar stratified media, one recent
proposes a hybrid method whereby most of the above problems yanq that is becoming widely acceptable is to implement a dis-

can be avoided. An efficient integral method that is valid for large : g
ko p is combined with the complex image method in order to take crete complex image approach [4]-[9]. Originally proposed and

advantage of the relative merits of both schemes. Itis found that a formulated by Fangt al. [4], this method is essentially an al-
wide overlapping region exists between the two techniques allowing ternative means of evaluating the time-consuming Sommerfeld
a very efficient and consistent approach for accurately calculating - integrals that are integral representations of the Green'’s func-
the Green'’s functions. In this paper, the method developed for the o The main advantage of a complex image scheme is that
computation of the Green'’s function is used for planar structures th ical luati fthe S feld int i
containing both lossless and lossy media. h € r!umer_lca ev_a uation (_) € ommer €ld integral In _con-
_ ’ ) junction with an interpolation scheme is completely avoided.
Index Terms—Antenna, complex images, Green's function, The method is particularly attractive for mixed-potential inte-
numerical analysis, scatterer. . . : \
gral-equation (MPIE) formulations since all the Green'’s func-
tions for this formulation are typically cast in terms of scalar
|. INTRODUCTION functions involving Hankel transforms. The advantage of the

N THE numerical modeling of printed planar structuregnethOd becomes ap_parent when it is realized that the Hankel
used in monolithic integrated microwave and miIIimeteVanSform for a spherical wave can be expressed, in closed form,

structures, it is generally accepted that the method of momeﬁfsa lslumlmattljc()jr)t.of cﬁnd&cpa:lefaves \III? thebSorr;TefrfeId |t<kj1en-
(MoM) [1] is one of the most efficient and rigorous method? yt[th].t tr;]a ! |or|1, 'te f b thotrrr]nu a |c|)n ende IS trom te
for the analysis of small-to-medium-sized structures (up get that Ine singuiarily ot bo € scalar and vector poten-

several wavelengths). MoM formulations in either the spatiH

or spectral domain involve the conversion of an operator bas . . .
ons. Furthermore, the moment integrals associated with the

integro-differential equation into a matrix equation that it lar t K in closed f p tain basis f
subsequently passed to the computer for numerical processmg.gu ar term are known in closed form for certain basis func-

The individual entries of the matrix require spatial or frequen '
integrations involving the Green’s function in the appropriate

domain and suitable basis and testing functions. Multip ex_ngage)\app;oachllsthge(rjllertally I|rg||tetvcj to tlr?w values 0:;
numerical integration is usually required for this step of th&"” = mp/ Ao, Wherep is the distance between the source an

MoM procedure that subsequently makes the filling time a lo ld points of the G.reen S funcpon a“tb. IS the free—;pgcg

time-consuming process. This is particularly true for proble avelength. As prewously men_ﬂoned, th's is a clear limitation

that involve electrically large geometries or many frequencie '_r p_ro_bl_ems O_f large d|men3|qn or high fre_quency wh_ere
s limit is easily exceeded. This paper examines the various

suqh asis _required in_ground penetration radar (GPR) stud.i hteqies and proposes a hvbrid method whereby most of the
which are interested in the short pulse scattering from bungg 9 bl Prop b 3::1 d. An efficient int Y | method
objects (e.g., [2] and [3]) or other problems involving larg ove problems can be avolded. An €tiicient integral metho
that is valid for largée:op is combined with the complex image
method (CIM) in order to take advantage of the relative merits
Manuscript received September 28, 1998. The work of N. V. Shuley w&@ _bOth schemes. It is found t_hat a wide _overlapplng region
supported in part by the Ministry of Science and Education, Madrid, Spain undaxists between the two techniques allowing a very efficient
Grant SAB95-0424. , _approach for accurately calculating the Green’s functions.
N. V. Shuley is with the School of Computer Science and E-'ecmcaéection Il reviews the CIMs currently in use and explains the
Englneerlng_, University of _Queenslan_d, Brisbane, Qld. 4072, Australla_l. = . y p
R. R. Boix and F. Medina are with the Department of Electronics andifficulties for largekop for both lossless and lossy structures.
E'iﬁtrf’mggEt'quéeggggrs'\}e’agf %V?;’r:”‘et}] ilolalg'ii‘r’r']'fﬁtsl;?'“électmmcs _Section Il discusses the corresponding integral method and
' : y P r§ecti0n IV presents some results, which combine Sections I

Electromagnetism, University of Seville, 41012-Seville, Spain. X )
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f;\ls are of the order of /R and, therefore, less singular than
tial-domain electric-field integral-equation (EFIE) formula-

Unfortunately, the numerical implementation for the com-
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Fig. 1. Multilevel planar geometry. k,=-jkoTr»

Without loss of generality, illustrations have been confined to  k =-jk(T+T,) ™Y
the scalar potential Green’s functiéh,. This component con-
tains all the essential features of the Sommerfeld integral: slowly
convergent oscillatory behavior with surface wave poles in the
integrand, branch point singularities, and a nonzero quasi-static ()
limit. The worst-case scenario also occurs when source and fi€lg 2. (a) Two-level complex integration paths in the comgigxplane. SIP
points are assumed to be coplanar, which corresponds to i SoTmere izcrafn pali e same path = als applatle to oz
boundary condition used in forming the MPIE. This condition
is assumed throughout this paper. Again, without loss of gener- o ) o ) . )
ality, attention has been focused on the microstrip structure f69™ this idea is that it IS impossible to F’U'ld accurate approxi-
illustrative purposes. mations of both(p, z,z") andG(k,, z, z’) for all values ofp
andk,, respectively.

Il CIM In the following, we will show how the CIM has been applied
' in this paper for the particular case:f »’. We will distinguish

We begin by considering a multilayered medium, whengetween the two cases.
eri =€, (1—tand)i=1,...,N. P'(z',y/, ') is the source  Case 1: It is assumed thaP and P’ lie on a plane parallel to
point and P(x,y, z) is the field point. LetG(p, z,2'), where the interfaces inside théth layer. In this case, for every value
p = /(z—2)2+ (y — y')? be a function representing eitherof » = »/, we approximate?(kp, z=2')as
the scalar Green'’s function or any of the vector potential entries
of the_ Green'’s dyad for the m_ult|layered medu_Jm of Fig. 1. Thg: (kp, 2,2 = 2) = Go(k,) + Gp (k,, 2)
function G(p, =, 2’) can be written in terms of its zeroth-order

Hankel transfornG(k,, z, ') as follows: 1 B
+————=Garor (k,, 2)
o Jy/ ks — k2
G(p,z,7) :/ G (kp,z,2") Jo (k,p) k,dk,
0(SIP)

whereky = w,/n1eq and

1 [ ~
=3 / o(SIP) G (kp,2,2) H(SQ) (kpp) kpdk, (1) 1
, for scalar potential
where the Sommerfeld integration path (SIP) is passing above ~ (k) = dreoerify kg — k7
the poles and branch point &f = ko of G(k,, 2, 2’) (Fig. 2) 0\ Ho for vector potential
[6]. The functionG(k,,z,2") can be obtained in a relatively 4MW’
straightforward way for the multilayered geometry of Fig. 1 by r
means of iterative algorithms [6]. However, on@ék,,,z,z’) R N ok Ri(2)
is known, the Sommerfeld integral of (1) cannot be obtained p (k,, z) = ﬁ 2
closed form and, therefore, it is not possible to obtain an exact j=1 F ri

analytical expression fof(p, z, 2’). The idea underlying the )

complex image approach is to obtain an accurate approxinktere, Go(k,) is the quasi-static limit or the asymptotic
tion of G(k,, z, 2') in such a way that the Sommerfeld integraléimit of G(k,,z, 2’ =z) as k, becomes largek,; are
of (1) can be determined in closed form and, thus, an accurtite poles of G(k,,z,2' = z) and R;(z) = lim(k, —

analytical approximation of(p, z, z') can be obtained accord-k,;)G(k,, z, 2 = 2)(k, — k,;) are the corresponding residues
ingly. As we shall see later in this paper, the problem arisirag the polesGaror(k,, ) is the function to be approximated
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by an exponential series and is given by by the Hankel transform. As in [9], this paper uses the MPOF
algorithm [12] to determine the unknown coefficients (am-
Garor (ky,2) =j /kg — k2 [é(km 2,2 = z) plitudes and exponents) of (3). This requires that the samples
R R of Ggror(k,) are taken in terms of a real variablewhich
— Go(k,) — Gp (k,, 2)} must be chosen in such a way that the complex functidt, of
Ny k., = /k3— k2 [appearing in the exponents of (3)] is a linear
~ Y ani(z)exp <—041i(2)\/ kg — k%) function oft. Following Aksun [9], the transformations linking
i=1 k. andt in the pathsC; and C» of the complexk,-plane are

N :
2 given by
+ Z a2i(z) exp <—a2i(z)1/k§ - k%) .
i=1

(3) Cy : k. =ko

t
—j - <t<
Jt+<1 T2>], 05t<T
Case 2: P and P’ are at the interface between tfth and Crik.=—jko[T2+1, 0<¢t<T. (5)
(i+1)th layers. Againg = Z’. This is nearly always the case re- L . i o

quired for single-layer microstrip-based problems without viaEUll 9uidelines for choosing, 7>—the points that delimit the

In this case, the above formulas still hold with the exception &SPective paths—may be found in [9]. Corresponding plots of

the quasi-static limiGo(k, ), which should be changed to €y andC, in the complex:.-plane are shown in Fig. 2(b).
The equations fo®; andC, used in this paper (5) are the

G ) — 1 4 same as those of Aksun, except for the fact that the wavenumber
o (kp) = 2me0 (eri +Erig1) j 2 _ 12 @) of the open layer has been used instead of the wavenumber of
TEOEri T Erit1) I/ o = 7% the source layer. This is an important difference, as discussed

- — Jr2e _p2i
The complex image formulation as outlined above is essef. KIPP and Chan [10]. Had we uséd; = /kger; — & in
tially the method of Chowet al.[5] for a microstrip structure and the expressions fofo(k,) and Garor(k,) instead of using

later extended by Aksun and Mittra [8]. In both of these paperg,, = [kE — k2, then C?o(kp) and @Gpop(kp) would have

the scalar and vector potential Green'’s functions in the spec %Id a branch point at, = ko\/z7 while Gi(k,) would stil
domain were transformed to the spatial domain by first anal ave asingle branch p&n?/q; o: k;,z[lo] Moreo/\)/er there rsno

|calllyt_extrfi{1ﬁt|ng f:com the spectlral dor(r;am, as Itn ;[_he_ above fo onceptual difficulty in using the same equations for treating the
mutation, the surlace-wave poles and quasi-stalic Images. sy substrate case. The path is the same. Wheréaswfas

remaining terms are then handled by performing a Prony, Ieﬁ% d instead o¥. o, the complex dielectric would force a change

square Prony, or matrix pencil of functions (MPOF) [12] eXpor, path. This difference reinforces the notion of having the func-

nential fit to the remaining terms that constitute the complex i"f'i'on to be approximated and the exact function sharing the same

ages. Aksun [9] then generalized the CIM to multilayer plan%rranch point. Analytical continuation requires the function to

structur_es as formul_a tg(_j here. I—_|0wever, in an effort to Preseye approximated to be analytic not only on the integration path
generality, whera priori information of the surface-wave poIesO

and quasi-static information may not be known explicitly, nei 2 In the complext, -plane, but aiso in all regions &, in the
) . . ' “heighborhood of the path. The paths in éheandk.-planes are
ther the poles, nor the quasi-static terms were extracted, b \ P P i P

: . . M Bwn in Fig. 2. Sampling and application of the MPOF algo-
method of proceeding directly to the entire Green's f“”Ct'Oﬁ‘thm then converts the Green’s function to a sum of exponen-

was considered. This generalization considered a two-step SaMs which may be directly inverted to the spatial domain via
pling scheme, which addresses the problem of trying to Simllj o éommerfeld identity [11]

taneously preserve both the loky behavior (predominantly
far-field information) and the slqw convergent asymptotiq be-e_jko\/m 1 [+ /R @
havior of the spectrum (predominately near-field information)——— = —,/ ———H" (k,p) k,dk,
although Kipp and Chan [18] were the first to report on such a Vv p> — b 25 J—oo(stP) [kE — k2
split sampling scheme in order to provide for a more effective (6)
utilization of the exponential approximation. Given that reguvhered is an arbitrary complex constant.
larly spaced data is required by any of the exponential fitting al- If we are dealing with small, g, the above procedures work
gorithms, this strategy represents a good compromise betweeil. However, the far-field Green’s function is dominated by
the conflicting requirements as noted above. cylindrical surface waves and the expression provided for the
The application of the two-step exponential fitting algorithn&Green’s function by the CIM contains a series of quasi-spherical
of Aksun [9] to (3) requires two sets of samples of the knowwaves of the type shown in the left-hand-side term of (6), which
function GGPOF(k,,). The first set of samples is obtaineddo not have a clear physical meaning. Thus, we expect prob-
along a deformed pati, in the k,-plane passing abovelems with the CIM for larges,p. We now illustrate some of the
the surface-wave poles and branch point(i*(ﬂf,,,z,z’) [see above observations with the canonical set of data of [5]. Here,
Fig. 2(a)]. Once the surface-wave poles and branch point ave have used the two-step method both with and without extrac-
safely passed, the second set of samples is obtained alortg of the surface-wave poles. We also include in the plot the
second pathC; over the real axis of thé,-plane. The com- effect of using the free-spaég (called “case A” in the figures)
bined pathC; + C; is thus equivalent to the SIP as requireés compared to the wavenumldgr /z,; of the dielectric layer
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18415 Two Different Formulations ! horizontal distance before divergence of the two results seem

with and without surface wave;pole extraction to differ by an order of magnitude compared to that reported in

10GHz ' [10]. In order to explain this, one should note that, whereas in

I Figs. 3 and 4, the source and field points are on the boundary
1

!

1E+14

183 between the substrate and free space, while in [10, Fig. 10],

the source and field points are inside the substrate between
dielectric layers. Thus, the errors resulting from using the
wrong branch pointt, = ko,/e, instead of the right one
k, = ko will be amplified. An attempt to increase the number
of samples orC; so as to improve the far-field result brought
about inconsistent and number-of-samples-dependent results,
sometimes with an even worse result for an increased number
Case }\\ of samples. This is not really surprising when the surface-wave
term Gp(k,) is not extracted from (2) and (3). Generally,
o0 000 100 200 a0 the exponential fitting procedure has a problem with terms
Log10(k0*rho) involving a p—*/2 behavior, i.e., in cases where the surface
wave is dominating, as well as the branch-point problems of
Fig. 3. G for the microstrip data of [5] using the two-step MPOF algorithmcgse B previously mentioned.
€, =12.6,1 = 1.0mm, f = 10 GHz. Case A corresponds to usip3 — k2 By realizing that the problem in the MPOF algorithm exists
in (2)~(4) andk, in (5), whereas case B corresponds to usingis. — k2 when the surface waves are dominant, it is instructive to extract
instead of, /kZ — k2 in (2)—(4) andkq /e instead ofk, in (5). For case A the surface-wave contribution before commencing the exponen-
curves:N; = 35 samples orC;, N, = 20 samples or(C,. For case B tial approximation. This process makes use of the Hankel trans-

curves:N; = 100 samples orC’y, N> = 300 samples orC,. With/without  form pair defined by the identity [16]
pole extraction refers to if the surface wave term(s) is/are extracted prior to
exponential approximation.

1E+12

Gv

1E+11

1E+10
- Without pole extraction

1E+9 — — —  With pole extraction

Cowd cernnd v vvnd s el el

Quadrature

TE+8 1 T T T \

»
=3
b=

1E+14

. 2i / i o ) Ry = —2 TS B (1)

' . ' 7 Jo kp — km‘ 2

wo Different Formulations: | @)

It might be thought that prior extraction of the surface-wave
contribution would significantly improve the compleximage ap-
proach in the far field, as these terms are the dominating ones
here. In Figs. 3and 4, itis shown that this is true in case A, butis
not true in case B. Since case B is the case treated by Aksun [9],
this seems to justify Aksun’s approach in avoiding the extraction
of the surface-wave terms. Determination of the surface-wave
contribution is a time-consuming task (because the poles and
associated residues have to be found) and, in case B of Figs. 3
and 4, the benefit of obtaining the surface-wave contribution is

1E+13

& 1E+12

Lol

]
B S Without pole extraction

— — —  With pole extraction

. bt lost due to the failure of the MPOF algorithm for larkgp.
Quadrature Case A:  if] Itis also instructive to examine the dependency on the number
1E+10 ‘ . . .
2‘00 _1‘00 OLO 11)0 2[00 3‘00 of samples in the two regions of Fig. 2(a). Ideally, all results
- ' Log10(k0*rho) ' ' should be independent on the sampling scheme employed to

make the exponential series approximation. However, due to the
Fig. 4. Same data as for Fig. 8.= 50 GHz. limitations of the numerical algorithm, this is rarely the case. A

large number of numerical tests show that the results are quite
(called “case B”) as per the above discussion (Fig. 3). The d#table with different numbers of sample$,() on theC part of
ference in sampling levels required to achieve correspondettiee spectrum. This is understandable since once the quasi-static
of the curves at low frequency is shown in the caption. Figs.c®ntribution is removed the two-step process makes the spec-
and 4 are for different frequency data of [5]. Itis to be noted thatum decay quickly to zero with very little fine detail. On the
for Fig. 3, there is only one TM surface wave propagating, whilether hand, rapid changes in the spectrum can occur at low
in Fig. 4, there are three surface waves. The “exact” result usivglues ofRe(k,), which correspond to the far-field region of
the method of averages [17] together with straight quadraturele spatial domain. It, therefore, seems plausible to increase the
shown for comparison. number of samples\:) in the C; region for increased accuracy

While both data sets agree very well with [5] for lowe in the far field. Fig. 5 shows that good results for lafge can

(apart from a normalizing factor), there is clearly a regiohe obtained for a low number of samples. It should also be noted
aroundlog,,(kop) = 1 where the image method fails. Thethat the number of sampl€$, required to achieve good results
type of failure is different for cases A and B as evidenced byr log,,(G.) whenlog,,(kgp) < 1in these figures is substan-
the figures, which seem to confirm the findings of [10]; irtially less than those mentioned in [9]. This is probably because,
particular, the data of [10, Fig. 10]. However, the maximurm the current paper, the quasi-static limit and the surface-wave
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18 tangent is apparent. Once again, it appears that the attenuated

surface wave cannot be properly reconstructed. For the lossy
case, the surface waves are decaying/qfp while the spher-

ical wave decays dt/p, the surface wave will thus predominate

at smallerkyp for increasing loss. Care needs to be exercised

when using the CIM in high loss situations where these surface
waves control the quality of the approximation.

Ll IHJHI

Convergence in the far field

1E+13

1 \I\HHl

1E+12

Gv

1E+11 Ill. INTEGRAL METHOD

N1=35, N2 samples
A. Lossless Case

|

- = = N2=15
L N2=25 It appears from the above section that the only difficulty with
g N2=30 the CIM is its inability to deal with the surface-wave behavior at
4 e N2235 largekqp. An integral technique that is attractive for larkgy
1849 L L N A B S behavior was proposed in [13]. Although the technique deteri-
-2.00 -1.00 0.00 1.00 2.00 3.00 i i i 1
log10(k0*rho) orates for decreasing p, this exactly suits our purposes. This

approach considers the imaginary axis as part of an alternative
Fig. 5. Convergence study of the number of samples used in the far-fidd@th for the evaluation of the Sommerfeld integral. If Cauchy’s
region. Microstrip structures,. = 12.6,¢# = 1.0 mm, f = 50 GHz. Case A theorem is applied to the contoGr of the k,-plane, shown in

with extraction of all surface-wave poles. Fig. 7(a), it can be shown that the Sommerfeld integral of (1)

can be rewritten as
1E+14

1E+13

CIM with Losses G(p,2,7) / Ko(zp)Re {JG(Jx Z, % )}xdx

1E+12

+J/ H a:p Im{é(x,z,z’)}xdw

+ 7 Z Ri(z,z )kpiH(SQ) (kpip) 8)

1E+11

1E+10

Gv

where K is the modified Bessel function of zeroth order and
R;(i=1,...,N)aretheresiduesatthe polfgs (i = 1, V) of
G(k,,z,7"). Although the result contains an infinite integral in
the firstterm, the modified Bessel function decays exponentially
as its argument increases, thus ensuring a quick computation of
— ‘ fche infinite integrgl _wit_h increasing. Thg seco_nd term is an

000 400 200 200 integral over the finite intervdD, ko] and is readily computed.
Log10(k0*rho) Although the technique also requires the poles and their residues
fo 6 G etween the CIM and auadrature (full | . to be evaluated, the total numerical effort required is actually

| omparison petween the an uadrature (tull fine f 1or
tw% levels of Igss The CIM (dotted line) useg case A Wlt§1 all pol)gs!gextracteaversely proportlonal tdiop. As noted by the O”gmators of
f =10 GHz,e, = 4.4,t = 10 mm. N, = 35 samples orCy, N, = 20 is technique, the various terms become dominant according
samples orC’,. to the distance from the source. Thus, the terms that correspond
to the deficiency of the compleximage approach, may be readily

term are extracted before applying the CIM. Furthermore, tientified.
right branch point is used in the approximation of the spectral
Green’s function, which are steps that are not considered in [5}. LOSSY Case
However, wherog, ,(kop) > 1, no matter how many samples Including losses implies that the poles now become complex
are used in the application of the CIM proposed in this papemd move downward off the real axis (and toward the imaginary
the results fotog;,(G.,) tend to be very poor. Once the stablexis for increasing loss). This means that they would no longer
number of samples has been ascertained, the exponential sdréesaptured in the lossless path noted above. However, a set
approximation is stable with frequency data, as shown in Figos two contoursC; and C- [see Fig. 7(b)] can be used for
for both the lossless and lossy cases. All data of this plot usitige computation of the Green’s function in this case. This
the CIM were calculated using the same number of samigles new set of two contours makes it possible to account for the
Typical results for the CIM involving lossy dielectrics havecomplex poles of the Green's function, as explained in [14].
not yet been treated in the literature. As mentioned previousByaluation of the Green'’s function using the two new contours
thek_-plane contour does not need to be modified if the caserAquires that the traditional Sommerfeld branch cut (which
formulation is followed. Fig. 6 shows some typical data for individes the complex:,-plane into a proper and an improper
creasing loss tangent using the CIM as compared to quadratsteeet) be modified to a new cut. This new cut is defined as
Again, the failure of the CIM for largéop and increasing loss —1 < Re{k,/ko} < +1. Ordinarily, using different branch
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Fig. 7. Integration contours in thé,-plane for the integral method of

Section Ill. (a) Lossless case. (b) Lossy case.

184 Complex Images v’s Integration scheme of part lll

Ll

1E+13

Lyl

1E+12 —

Gv

1E+11

Lyl

1E+10

1E49 L L R —
-2.00 -1.00

0.00 1.00
log10(k0*rho)

Fig. 8. Comparison of the calculation f6f,- using the CIM (case A with full
surface-wave pole-extraction full line) and the integral method (dotted line) of
Section lll,e, = 12.6,+t = 1.0 mm, Ny = 35 samples or('y, No = 20
samples orC’,.

IV. COMBINATION OF COMPLEX IMAGES AND
INTEGRAL METHOD

It is suggested that, for all values bfp, a combination of
the CIM and the integral method will be a very efficient means
of calculating any Green’s functions required in a mixed-po-
tential formulation. As has been observed, the CIM can experi-
ence problems in the region of larggo. On the other hand, the
integral method becomes very time consuming for sragdl.
Clearly there must be a region of overlap for the two approaches
that will allow a certain amount of flexibility in an automatic se-
lection scheme. Two beneficial results of the study of the overlap
procedure are, firstly, that we are able to check the relative ac-
curacy of each of the techniques against each other in respective
regions and, secondly, since the terms in the integral approach

cuts means that the leaky-wave poles, which were all on thg,e 4 direct correspondence to certain sections of the field, we
lower Riemann sheet in the case of the Sommerfeld Culgy ape to readily identify the source of any inaccuracies in the

can now be a problem if the contour is not chosen correct
However, it can be shown that this particular path avoids the

B’omputational process.
Fig. 8. shows the combination of the two techniques for the

leaky-wave poles provided that any leaky-wave pole is nfsgjess case. The integral method has been computed for an

close to the negative imaginary axis. Thus, with this choice Bf)per limit of 10k,
integration path, any lossy poles present are enclosed, whj
was not the case of the lossless formulation. When Cauch)g(;s

theorem is applied to the two closed contodrs and Cs

of Fig. 7(b), ,it is possible to 9btajn an expre;siqn for thSfaverywide overlapping region between the two methods and
Sommerfeld integral of (1), which is a generalization of (S%e lower end point can be changed by selection of an appro-

This expression is given by

Glpn) =2 [ Kolaon) [ a2
0
— (—jx,z,z’)}xdx

G

1 fho -

+ 5/ H,(LQ)(xp) [G (x —|—j0+,z,z/)
0

-G (x —|—j0_,z,z/)} zdz

+ ? Z RZ (Zv Z/) H’I(LQ) (kmp) kpi-

©)

for the modified Bessel term. If required,

éPHigher truncation level gives a more accurate result for lower
, but at increased computational effort. It should be noted
that the point of departure of the CIM defines the upper end point

priate upper limit of the first integral in (5). As there are two or
more surface waves interacting in the 30- and 50-GHz plots, the
ripple structure is more pronounced in those plots.

Fig. 9 shows some new results for the CIM for a lossy struc-
ture for the same parameters of Fig. 6. Here, the “exact” quadra-
ture curve has been repeated for convenience. Losses in the
system tend to flatten out the characteristic “plateau” of the
curve and the corresponding failure of the MPOF algorithm is
less dramatic, but as discussed earlier. The surface wave also ex-
periences a decaying mechanism and eventually terms that are
without attenuation dominate, which lead to an interference phe-
nomena at largkop, shown here arouniég(kop) = 3.0 for the
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Fig. 9. Comparison between the integral method of Section Il (dotted line)
and quadrature (solid line) repeated from Fig.f6= 10 GHz, ¢, = 4.4,

t = 10 mm. The truncation level for the first integral of (9) has been set at
10k .

(1]
(2]
tan & = 0.02 curve. This interaction has been interpreted as a
Zenneck—surface-wave interaction and is due to the interaction
of a pole and branch point [15]. 3]

Finally, it is also instructive to check the claim that the sur-
face-wave contributions indeed dominate in the far field. We [4]
chose a value dog;(kop) = 1 corresponding to a nominal
distance at which CIM experiences difficulties. We evaluated 5
the contribution of the surface-wave term(s) compared to the
total field, as formulated in (8) and (9). The percentage error be- 6]
tween the approximate (surface-wave field) and “exact” [com-
plete (8)] was 4.2% for the data of Fig. 3 and 4.8% for Fig. 4,
both reducing for largeky p. For the medium-loss case of Fig. 9
(tan 6 = 0.02), the error increased to 26%, only falling to 3.5%
by log,o(kop) = 1.5. Although somewhat frequency depen- [8]
dent, such error levels indicate that, for high-accuracy evalua-
tion of the Green'’s function, the surface-wave terms are, in fact,[g]
not completely dominant when the CIM begins to fail.

The organizational strategy in a generalized code construg;
tion would, therefore, be to compute the Green’s function using
the CIM for smallkqp and then implement the integral method
for intermediate distances. The combination of the CIM and inf'*
tegral method of Section Il for the lossless case is shown dif12]
rectly in Fig. 8 and the lossy case may be inferred from a com-
bination of Figs. 6 and 9. At largky p, the surface waves (both
cylindrical and Zenneck waves) are dominating and the Green’s
function may be set without any integration at all, as explained
in[15]. The overlap between these regions may be chosen somig?
what arbitrarily given the large overlap between the strategies.
Although this paper has concentrated on the scalar potéhtial  [15]
similar observations may be made for the other components of
the vector potential dyadi€' 4. [16]

(17]

V. CONCLUSION [18]

For the computation of the Green’s functions using an MPIE
approach in a planar multilayered structure, itis not sufficient to
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rely solely on the CIM for the cases where large transverse dis-
tances are involved. This paper has demonstrated a strategy of
combining an integral and the CIM for very rapid and accurate
evaluation of the Green’s function. The method has also been
extended to the case of lossy media. However, it must be stated
that the price paid for this combined approach is ultimately an
increase in CPU time over the direct application of the CIM
alone in spite of the very efficient numerical integration called
for in the approach, as discussed in this paper.
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